Q1. Write a C++ function SUMFUN() having two parameters X (of type double) and n (of type integer) with a result type as double to find the sum of the series given below-

\[X + \frac{X^2}{3!} + \frac{X^3}{5!} + \cdots + \frac{X^n}{(2n-1)!} \]

Q2. Write a function named SUMFUN(), with arguments n and N, which returns the sum of the following series-

\[1-x^2/2+x^3/3-x^4/4+x^5/5-x^6/6+\cdots+x^n/N \]

Q3. Write a function SUMFUN() with arguments X and N which returns the sum of N terms of the following-

\[x-x^3/3+x^5/5-x^7/7+x^9/9+\cdots \]

Q4. WAP to calculate sum of digits of a number.

Q5. WAP to calculate reverse of a number.

Q6. Write a function called Zero_small () that has two integer arguments being passed by reference and sets the smaller of the two numbers to 0. Write main program to access this function.

Q7. WAP using functions to calculate-

\[(1) + (1+2) + (1+2+3) + (1+2+3+4) + \cdots \text{upto N terms}. \]

Q8. WAP using functions to calculate-

\[(2^2) + (2^2+4^2) + (2^2+4^2+6^2) + (2^2+4^2+6^2+8^2) + \cdots \text{upto N terms}. \]

Q9. WAP using functions to calculate-

\[1+1/3+1/5+1/7+1/9+\cdots \text{upto N terms}. \]

Q10. WAP using functions to calculate-
1 + 1/x + 1/x^2 + 1/x^3 + 1/x^4 + \ldots \ldots \text{upto } N \text{ terms.}