Chemistry

Assignment No: 2

(Solutions)

Q1. Define osmotic pressure.
Q2. State one characteristic of an ideal solution.
Q3. State Raoult's law for solutions of non-volatile solutes.
Q4. Two liquids X and Y boil at $110^{\circ} \mathrm{C}$ and $130^{\circ} \mathrm{C}$ respectively. Which of them has higher vapour pressure at $50^{\circ} \mathrm{C}$?

Q5. What type of azeotrope formed on mixing nitric acid and water?
Q6. What happens when blood cells are placed in pure water?
Q7. Differentiate between molarity and molality of a solution? What is the effect of temperature on both.

Q8. 100mg of protein is dissolved in just enough to make 10.0 ml of solution. If this solution has osmotic pressure of 13.3 mm of Hg at $25^{\circ} \mathrm{C}$. What is the molar mass of protein $\left(\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$.

Q9. Henry law constant for CO_{2} dissolving in water is $1.67 \mathrm{X} 10^{8} \mathrm{~Pa}$ at 298 K . Calculate the quantity of CO_{2} in 1 L of soda water when packed under 2.5 atm CO_{2} pressure at 298 K .

Q10. Calculate the freezing point depression expected for 0.0711 m aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. If this solution actually freezes at $-0.320^{\circ} \mathrm{C}$, what is the value of i ? (K_{f} for water $1.86^{\circ} \mathrm{C} \mathrm{mol}^{-1}$).

Q11. What is meant by negative deviation from Raoult's law? Draw a diagram to illustrate the relationship between vapour pressure and mole fractions of components in a solution to represent negative deviation.

Q12. Calculate the temperature at which a solution containing 54 g of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in 250 g of water will freeze. (K_{f} for water $1.86 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$).

Q13. Heptane and octane form an ideal solution at 373 K . The vapour pressure pure liquids at this temperature are 105.2 KPa and 46.8 KPa respectively. If the solution contain 25 g of heptane and 28.5 g of octane, Calculate:

1) Vapour pressure exerted by heptane.
2) Vapour pressure exerted by solution.
3) Mole fraction of octane in the vapour phase.

Q14. At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ present per litre in its aqueous solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of another solution of glucose is 1.52 bar at the same temperature. What would be its concentration?

Q15. (a) What are non-ideal solutions?
(b) What role does the molecular interaction play in deciding the vapour pressure of solutions :-

1) Alcohol and acetone.
2) Chloroform and acetone.

Q16. Urea form an ideal solution in water. Determine the vapour of an aqueous solution containing 10% by mass of urea at $40^{\circ} \mathrm{C}$.
(Vapour pressure of water at $40^{\circ} \mathrm{C}=55.3 \mathrm{~mm}$ of Hg)
Q17. A 4\% solution of sucrose is isotonic with 3\% solution of an unknown organic substance. Calculate the molecular mass of unknown substance (molecular mass of sucrose is $342 \mathrm{~g} \mathrm{~mol}^{-1}$).

Q18. What is the mole fraction of a solute in 2.5 m aqueous solution?
Q19. Give reason:
When 30 ml of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and 30 ml of $\mathrm{H}_{2} 0$ are mixed, the volume of resulting solution is more than 60 ml .

Q20. 2 g of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ dissolved in 25 g of Benzene shows a depression in freezing point equal to 1.62 K . Molar depression constant for $\mathrm{C}_{6} \mathrm{H}_{6}$ is $4.9 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$. What is the $\%$ association of acid if it exists as dimers in solution.

Q21. A solution is obtained by mixing 300 g of 25% solution and 400 g of 40% solution by mass. Calculate the mass\% of the resulting solution.

Q22. The vapour pressure of water is 12.3 pa at 300 K . Calculate vapour pressure of 1 molar solution of a solute in it.

Q23. Explain why there is a rise in boiling point when a non-volatile solid is dissolved in a liquid.

Q24. An aqueous solution containing 1.248 g of barium chloride (molar mass $\left.=208.34 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ in $100 \mathrm{~g}^{\text {of }} \mathrm{H}_{2} 0$ boils at $10.0832^{\circ} \mathrm{C}$. Calculate the degree of dissociation of $\mathrm{BaCl}_{2}\left(\mathrm{~K}_{\mathrm{b}}\right.$ for $\left.\mathrm{H}_{2} 0=0.52 \mathrm{KKg} \mathrm{mol}^{-1}\right)$.

Q25. The vapour pressure of pure liquids A and B are 450 and 700 mm Hg at 350 K respectively. Find the composition of the liquid mixture if total vapour pressure is 600 mm of Hg . Also find the composition of the vapour mass.

Q26. Calculate the molarity of 300 ml of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ diluted to 500 ml .
Q27. How many ml of 0.1 M HCl are required to react completely with 1 g mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} containing equimolar of two.

Q28. Calculate of $\Delta \mathrm{T}_{\mathrm{f}}$ of $\mathrm{H}_{2} 0$ when 10 g of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}-\mathrm{COOH}$ is added to 250 g of I $\mathrm{H}_{2} 0 . \mathrm{Ka}=1.4 \mathrm{X1}^{-3}, \mathrm{~K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$, (Molecular mass of acid $=122.5 \mathrm{gmol}^{-1}$)

