Chemistry

Assignment 4

(Chemical Kinetics)
Q1. A reaction is of second order with respect to a reactant. How will the rate of reaction be affected if concentration of this reaction is i) doubled ii) reduced to half.

Q2. Define: a) Elementary step in a reaction.
b) Rate of a reaction.

Q3. A $1^{\text {st }}$ order reaction has a rate constant of $0.0051 \mathrm{~min}^{-1 .}$ If we begin with 0.10 M concentration of the reactant. What concentration of reactant will remain in solution after 3 hours.

Q4. Distinguish between order and molecularity of a reaction. When will the order and molecularity of a reaction be the same.

Q5. List four factors which affect the rate of reaction.
Q6. The decomposition of phosphine $4 \mathrm{PH}_{3}(\mathrm{~g}) \rightarrow \mathrm{P}_{4}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})$ has rate law:
Rate $=\mathrm{K}\left[\mathrm{PH}_{3}\right]$. Rate constant is $6.0 \times 10^{-4} \mathrm{~s}^{-1}$ at 300 K ,activation energy is $3.05 \mathrm{X} 10^{5}$ $\mathrm{J} \mathrm{mol}^{-1 .}$ Calculate value of rate constant at 310 K . $\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

Q7. Define a) Order of a reaction b) Activation energy of a reaction.
Q8. The data given below is for the reaction:
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ at 298 K

Sr.No.	$\mathrm{N}_{2} \mathrm{O}_{5}$ $\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)$	Rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}\left(\mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}\right)$
1	1.13×10^{-2}	34×10^{-5}
2	0.84×10^{-2}	25×10^{-5}
3	0.62×10^{-2}	18×10^{-5}

Determine : i) order of the reaction ii) Rate constant iii) Rate law
Q9. What is the molecularity of the reaction:

$$
\mathrm{Cl} \rightarrow 1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})
$$

Q10. As a reaction proceeds why does its rate keep on changing?
Q11. The rate of reaction $\mathrm{X} \rightarrow \mathrm{Y}$ becomes 8 times when the conc. of X is doubled. Write rate law.

Q12. A reaction is 50% complete in 2 hours and 75% in 4hours. What is the order of the reaction.

Q13. When the rate of reaction is is equal to specific reaction rate.
Q14. State the unit of "rate constant in a zero order reaction.
Q15. Give one example of Pseudo first order reaction.
Q16. For the reaction $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, how the rate of reaction expressions $-\mathrm{d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}$ and $\mathrm{d}\left[\mathrm{NH}_{3}\right] /$ dt are interrelated?

Q17. The activation energy for the reaction:

$$
2 \mathrm{HI}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}(\mathrm{~g}) \text { is } 209.5 \mathrm{KJ} \mathrm{~mol}^{-1}
$$

Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

Q18. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ is a first order reaction with a rate of constant of $5 \mathrm{X10}^{-4} \mathrm{sec}^{-1}$ at $45^{\circ} \mathrm{C}$ i.e. $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$. If initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 0.25 M , calculate its concentration after 2 min . Also calculate half life of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$

Q19. A first order decomposition reaction takes 40 min for 30% decomposition. Calculate its $\mathrm{t}_{1 / 2}$ value.

Q20. At elevated temperatures, HI decomposes according to the chemical equation: $2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ at $44.3^{\circ} \mathrm{C}$. The rate of reaction increases with concentration of HI as shown below:

		1	2	3
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	\rightarrow	0.005	0.01	0.02
Rate	\rightarrow	7.5×10^{-4}	3.0×10^{-3}	1.2×10^{-2}

Determine i) order of reaction and ii) write the rate expression.
Q21. A reaction is of first order in A and second order in B.
a. Write differential rate equation.
b. How is the rate affected if
i) conc. of B is tripled
ii) conc. of both A and B are doubled.

Q22. Calculate half life of a first order reaction from their rate constant given below:
a) $200 \mathrm{~s}^{-1}$
b) $2 \mathrm{~min}^{-1}$
c) 4 year ${ }^{-1}$

Q23. The half life for decay of radioactive C-14 is 5730 years. An archaeological tool containing wood has only 80% of C-14 activity as found in living tree. Calculate the age of the tool.

Q24. Show that the time required for 99% completation is twice the time required for the completation of 90% reaction.

Q25. Derive the general expression for half life of a $1^{\text {st }}$ order reaction.

