<u>Chemistry</u> <u>Assignment 4</u> (Chemical Kinetics)

- Q1. A reaction is of second order with respect to a reactant. How will the rate of reaction be affected if concentration of this reaction is i) doubled ii) reduced to half.
- Q2. Define: a) Elementary step in a reaction.b) Rate of a reaction.
- Q3. A 1st order reaction has a rate constant of 0.0051 min^{-1.} If we begin with 0.10M concentration of the reactant. What concentration of reactant will remain in solution after 3 hours.
- Q4. Distinguish between order and molecularity of a reaction. When will the order and molecularity of a reaction be the same.
- Q5. List four factors which affect the rate of reaction.
- Q6. The decomposition of phosphine $4PH_3$ (g) $\rightarrow P_4(g)+6H_2(g)$ has rate law: Rate=K [PH₃]. Rate constant is $6.0X10^{-4}$ s⁻¹ at 300 K, activation energy is $3.05X10^5$ J mol⁻¹. Calculate value of rate constant at 310 K. (R=8.314 J K ⁻¹ mol⁻¹)
- Q7. Define a) Order of a reaction b) Activation energy of a reaction.
- Q8. The data given below is for the reaction: $2 N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ at 298K

Sr.No.	$\begin{array}{c} N_2O_5 \\ (mol \ L \ ^{-1}) \end{array}$	Rate of disappearance of $N_2O_5 (mol L^{-1} min^{-1})$
1	1.13X10 ⁻²	34X10 ⁻⁵
2	0.84X10 ⁻²	25X10 ⁻⁵
3	0.62X10 ⁻²	18X10 ⁻⁵

Determine : i) order of the reaction ii) Rate constant iii) Rate law

Q9. What is the molecularity of the reaction: $Cl \rightarrow 1/2 Cl_2(g)$

- Q10. As a reaction proceeds why does its rate keep on changing?
- Q11. The rate of reaction $X \rightarrow Y$ becomes 8 times when the conc. of X is doubled. Write rate law.
- Q12. A reaction is 50% complete in 2hours and 75% in 4hours. What is the order of the reaction.

- Q13. When the rate of reaction is is equal to specific reaction rate.
- Q14. State the unit of "rate constant in a zero order reaction.
- Q15. Give one example of Pseudo first order reaction.
- Q16. For the reaction $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$, how the rate of reaction expressions $-d[H_2]/dt$ and $d[NH_3]/dt$ are interrelated?
- Q17. The activation energy for the reaction: $2HI (g) \rightarrow H_2+I_2(g)$ is 209.5 KJ mol⁻¹ Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?
- Q18. The decomposition of N₂O₅(g) is a first order reaction with a rate of constant of $5X10^{-4}$ sec⁻¹ at 45°C i.e.2 N₂O₅(g) \rightarrow 4 NO₂(g)+ O₂(g). If initial concentration of N₂O₅ is 0.25M, calculate its concentration after 2 min. Also calculate half life of decomposition of N₂O₅(g)
- Q19. A first order decomposition reaction takes 40 min for 30% decomposition. Calculate its $t_{1/2}$ value.
- Q20. At elevated temperatures, HI decomposes according to the chemical equation: 2HI (g) \rightarrow H₂ (g) + I₂ (g) at 44.3°C. The rate of reaction increases with concentration of HI as shown below:

	1	2	3
$\mathrm{HI}(\mathrm{mol}\;\mathrm{L}^{-1})\to$	0.005	0.01	0.02
Rate \rightarrow	7.5X10 ⁻⁴	3.0×10^{-3}	1.2×10^{-2}

Determine i) order of reaction and ii) write the rate expression.

- Q21. A reaction is of first order in A and second order in B.
 - a. Write differential rate equation.
 - b. How is the rate affected if
 - i) conc. of B is tripled
 - ii) conc. of both A and B are doubled.
- Q22. Calculate half life of a first order reaction from their rate constant given below: a) 200 s^{-1} b) 2 min^{-1} c) 4 year^{-1}
- Q23. The half life for decay of radioactive C-14 is 5730 years. An archaeological tool containing wood has only 80% of C-14 activity as found in living tree. Calculate the age of the tool.
- Q24. Show that the time required for 99% completation is twice the time required for the completation of 90% reaction.
- Q25. Derive the general expression for half life of a 1st order reaction.